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ABSTRACT
The session-based recommendation aims to predict users’ immedi-
ate next actions based on their short-term behaviors reflected by
past and ongoing sessions. Graph neural networks (GNNs) recently
dominated the related studies, yet their performance heavily relies
on graph structures, which are often predefined, task-specific, and
designed heuristically. Furthermore, existing graph-based methods
either neglect implicit correlations among items or consider explicit
and implicit relationships altogether in the same graphs. We pro-
pose to decouple explicit and implicit relationships among items .
As such, we can capture the prior knowledge encapsulated in ex-
plicit dependencies and learned implicit correlations among items
simultaneously in a flexible and more interpretable manner for
effective recommendations. We design a dual graph neural network
that leverages the feature representations extracted by two GNNs: a
graph neural network with a single gate (SG-GNN) and an adaptive
graph neural network (A-GNN). The former models explicit depen-
dencies among items . The latter employs a self-learning strategy to
capture implicit correlations among items. Our experiments on four
real-world datasets show our model outperforms state-of-the-art
methods by a large margin, achieving 18.46% and 70.72% improve-
ment in HR@20, and 49.10% and 115.29% improvement in MRR@20
on Diginetica and LastFM datasets.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Session-based recommendation focuses on capturing users’ short-
term interests from sessions rather than exploring their rich his-
torical interactions or modeling users’ long-term interests [29]. It
has shown significant advantages in dynamic and real-time recom-
mendations. Existing session-based recommendation methods are
mainly sequence-based or graph-based. Sequence-based methods
view items in a session as a sequence and predict the next item with
which users may interact. For example, Markov Chain-based meth-
ods [21, 23] map the current session into a Markov Chain and then
infer the user’s next action solely based on the last item in the ses-
sion. Deep learning models like RNN, GRU and LSTM [9, 10, 19, 25]
are increasingly applied to session-based recommendation, given
their outstanding feature representation ability. Several studies, e.g.,
NARM [12], SHAN [37], STAMP [15], and Transformers4rec [6],
further apply attention mechanisms to distinguish the importance
of items and capture user intentions in session-based recommenda-
tion. Graph-based methods rely on graph structures to represent
relationships among items and aggregate the auxiliary informa-
tion to improve performance. The graphs can be intra-session or
inter-session. The former only considers the item relations within a
single session [3, 7, 16] while the latter considers more than one
session in the same recommendation problem [32, 41].

Sequential models generally become ineffective when dealing
with short sessions, which widely exist [2, 18]. For example, the
average and median lengths of sessions in a popular session dataset,
Diginetica1 are only 4.80 and 4.00. The lengths are 3.97 and 3.00 for
another dataset, Yoochoose2. Graph-based methods rely on problem-
specific designs of graph structures to achieve good performance.
Although predefined graphs contain prior domain knowledge, they
may be incomplete or even unavailable due to the difficulty of
capturing latent and long-range dependence among sessions [38].
Furthermore, existing graph-based methods focus on modeling
1http://cikm2016.cs.iupui.edu/cikm-cup
2http://2015.recsyschallenge.com/challege.html
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Figure 1: The upper half shows different graph structures for
modeling item relationships in an example of three sessions.
(b) applies shortcuts and self-loops (denoted by red dotted
lines) to each session to capture long-range dependencies [3];
(c) creates a virtual item (𝑖0) to connect all the items in each
session [16]; (d) illustrates all item relationships across all
sessions with a single graph [36]; (e) groups items (e.g., ac-
cording to their brands) and builds a hypergraph based on
items’ co-occurrence in the same sessions [34]. The lower
half showcases our proposal of decoupling explicit and im-
plicit item relationships for an example of two sessions.

explicit dependencies while neglecting the implicit relationships,
which are proven equally important [5, 33].

We aim to leverage the explicit dependencies and dynamic cor-
relations among items as reflected by sessions simultaneously for
effective session-based recommendation. To this end, we propose a
novel Dual Graph Neural Network (DGNN), which models explicit
dependencies and implicit correlations between items separately
for node representation and next item prediction. Decoupling ex-
plicit dependencies and implicit correlations could provide extra
flexibility for model training [35] and improves interpretability
through visualization. Here, we use examples (Figure 1, detailed
in Section 3) to illustrate the distinctions of our approach from
previous approaches in graph structure.

In a nutshell, we make the following contributions in this paper:

• To the best of our knowledge, we are the first to decouple
explicit and implicit relationships among items in a holistic
approach for effective session-based recommendation.

• We propose an adaptive graph neural network (A-GNN) to
capture the implicit correlations between items in a self-
learning strategy. This allows the graph structures to dy-
namically change during model training to accommodate
the evolution of users’ preferences.

• We present a novel graph neural network with a single gate
(SG-GNN) to harness the explicit ordering (or sequential
dependencies) of items in an inter-session graph.

• Our extensive experiments on four real-world datasets demon-
strate our model outperforms several baselines and state-of-
the-art methods. All datasets and code will be made public
via GitHub3.

2 RELATEDWORK
2.1 Sequential Models
Sequential Neural Network-based Methods. Several studies
leverage sequential information explicitly via sequential neural
networks, e.g., LSTM, and GRU, to capture users’ historical inter-
ests [10, 19, 25, 28]. For instance, GRU4Rec [10] is the first that
applied RNNs to model the whole session for the next item rec-
ommendation. HRNN [19] develops hierarchical RNNs with inter-
session information transfer to address the problem of personalizing
session-based recommendation. NARM [12], a neural attentive rec-
ommendation machine, applies a hybrid encoder with an attention
mechanism to model users’ sequential behavior and capture the
main purpose in the current session. Liu et al. [15] follow a sim-
ilar idea but replace the recurrent neural network with a simple
multilayer perceptron (MLP) network, and propose a short-term at-
tention/memory priority (STAMP) model to capture both long-term
and short-term interests.

2.2 Graph Models
Intra- and Inter- session Graph Methods. Graph neural net-
works can capture multi-hop contextual information and learn item
correlations and representation through information propagation
and aggregation. Due to the above merits, GNNs achieve promis-
ing results on session-based recommendation. Intra-session graph
methods only rely on the current session for graph construction.
Wu et al. [33] propose SR-GNN, which is a pioneering work that
introduces a graph neural network to model explicit relationships
between items for session-based recommendation. Based on this
work, Xu et al. [36] adopt GNN to extract local context information
and apply a self-attention network to capture global dependencies
between distant items. Although intra-session-based models can ex-
plore rich transitions between items, they only leverage the current
session to make the recommendation.

Compared with intra-session graphs, an inter-session graph
utilizes the current and neighbor sessions for recommendation.
Specifically, inter-session graph methods can be divided into user-
oriented models [4, 39], item-oriented models [1, 11, 32, 36, 41],
and others [7, 17, 34]. User-oriented models create the inter-session
graph via users’ historical interaction records or social informa-
tion. For instance, Chen et al. [4] consider users’ friends and the
social influences for recommendation. As for the item-oriented
models, most related work constructs the inter-session graph via
similar attributes of items or adjacent relationships between items
across all historical sessions. Wang et al. [32] and Huang et al. [11]
exploit all item transitions to better infer user preferences in the
current session. Furthermore, some other works also explore hyper-
graph [7, 13, 34] or heterogeneous graph [8, 17] for session-based
recommendation.

3https://github.com/ZihaoLi97/WSDM23-DGNNs--for-Session-based-
Recommendation
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GNN with Implicit Relationships Modeling. Convolutional
GNNs (e.g., SR-GNN and GC-SAN) only aggregate information
from adjacent items while neglecting the information from all other
items. Pan et al. [16] introduce a virtual star node in the current
session to capture non-adjacent items’ information and achieve
long-range information propagation. Chen et al. [3] propose two
graphs with self-loop and shortcuts for items’ co-occurrence and
order modeling to alleviate the information loss and long-range
dependency capturing problems. Furthermore, based on the sub-
cluster of sessions, Guo et al. [7] construct multi-granularity intent
units for each session to capture users’ multi-level interests through
a fixed graph structure. However, as users’ multi-granularity in-
tent [7, 24], the false adjacent [40] and long-range dependency [3]
in graphs, fixed graph structures are insufficient and inflexible to
adapt to all the datasets, which will incur the model to achieve
sub-optimal results. The above motivates us to propose an adaptive
graph convolution module to model the implicit correlations with
a self-learning strategy for session-based recommendation.

3 PROBLEM FORMULATION
Let I = {𝑖1, 𝑖2, 𝑖3, ...𝑖𝑁 } be the set of items, where 𝑁 is the number
of items. Each session 𝑠 = [𝑖1, 𝑖2, 𝑖3, ..., 𝑖𝑜 ] consists of a sequence of
interactions 𝑖𝑘 ∈ I(1 ≤ 𝑘 ≤ 𝑜) related to one user. Suppose we
embed each item 𝑖 ∈ I into the same space and denote by x𝑖 ∈ R𝑑
the representation of item 𝑖 . Therefore, the representation of the
item set is denoted by X ∈ R𝑁×𝑑 .

Given a session 𝑠 , session-based recommendation aims to predict
the next click item 𝑖𝑠,𝑚+1. Our model generates probabilities ŷ for
all possible items based on the input session 𝑠 . Each element’s
value of vector ŷ is the recommendation score of the corresponding
item. The items with the top-𝑘 recommendation scores will be
recommended as the model’s output.
Graph for explicit dependencies. As shown in Figure 1(f), given
a session set S, we denote the relationships between all adja-
cent items in S via an inter-session graph (dynamic global graph)
G𝑠 = (V, E), whereV and E indicate the set of nodes and edges
respectively. Each node represents an item in sessions. For an edge
𝑒 ∈ E, it could be represented by an ordered tuple (𝑣𝑖 , 𝑣 𝑗 ) (𝑣𝑖 , 𝑣 𝑗
are adjacent items in sessions) which indicates the edge points
from node 𝑣𝑖 to node 𝑣 𝑗 . Hence, we define an explicit dependency
from 𝑣𝑖 to 𝑣 𝑗 . The connectivity among the whole graph is rep-
resented by an adjacency matrix A𝑠 ∈ R𝑁×𝑁 with A𝑠

𝑖 𝑗
≠ 0 iff

(𝑣𝑖 , 𝑣 𝑗 ) ∈ E and A𝑠
𝑖 𝑗

= 0 iff (𝑣𝑖 , 𝑣 𝑗 ) ∉ E, where 𝑁 is the total num-
ber of nodes. In addition, the adjacent matrix 𝐴𝑠 is normalized
following Ã𝑠 = Aij

𝑠/∑𝑗 Aij
𝑠 . Hence, the inter-session graph could

model the explicit dependency between items.
Graph for implicit correlations. As shown in Figure 1(g), given a
session set S, we could also construct a global graph G𝑔 = (V, E).
We add an edge between any pair of nodes in G𝑔 to indicate an
implicit correlation. The element 𝐴𝑔

𝑖 𝑗
in an adjacency matrix A𝑔

represents the correlation between item 𝑖 and item 𝑗 , which can be
learned and adjusted dynamically by A-GNN. To decrease the time
and space complexity, in our paper, we construct a global graph for
all the sessions in a batch, i.e., the sessions from the same batch
will share a same global graph.

4 METHODOLOGY
The overall architecture of our proposed approach (Figure 2) con-
sists of four major components: an adaptive graph neural network
for implicit information aggregation and node representation (Sec-
tion 4.2), a graph neural network with a single gate for explicit
information aggregation and node representation (Section 4.3), a
session representation layer (Section 4.4), a prediction layer and
the loss function (Section 4.5).

4.1 Overview
Our frameworkworks as follows. First, it constructs an inter-session
graph. Specifically, we collect an item set based on neighbor sessions
from one batch, and convert every item 𝑣𝑖 ∈ V into a unified low-
dimension embedding space X. Then, the item embedding is fed
into a dual graph neural network (A-GNN and SG-GNN) to capture
implicit and explicit item relationships. The fusion layer fuses the
updated item representation X̃ from those two modules. Finally, our
soft-attention mechanism obtains session representations s and a
softmax function generates the next item’s predication probability
ŷ. We formulate the above process as follows:

X(𝑚)
A-GNN = A-GNN(X + X(1)

A-GNN + ... + X(𝑚−1)
A-GNN,A

𝑔)

X(𝑙)
SG-GNN = SG-GNN(X(𝑙−1)

SG-GNN, Ã
𝑠 )

X̃ = F(X(𝑚)
A-GNN,X

(𝑙)
SG-GNN)

s = SR(X̃)
ŷ = P(s,X)

(1)

where X(𝑚)
A-GNN is the item representation of A-GNN with𝑚 blocks.

X(𝑙)
SG-GNN is the item representation of SG-GNN after 𝑙 convolution

layers. F(·), SR(·), P(·) are the representation fusion layer, session
representation layer and prediction layer, respectively.

4.2 A-GNN Module
The adaptive graph neural network (A-GNN) module aims to cap-
ture implicit correlations between any of two items dynamically
with a self-learning strategy for item representation. To achieve this
goal, A-GNN employs multi-head correlation, formulated below,

Q𝑖 = XW𝑄

𝑖
, K𝑖 = XW𝐾

𝑖 , V𝑖 = XW𝑉
𝑖

A𝑔
𝑖
= Dropout(tanh(Q𝑖K𝑇𝑖 ))

XA-GNN𝑖
= A𝑔

𝑖
V𝑖

XA-GNN = Dropout(ReLU( [XA-GNN0 | |...| |XA-GNN𝑘
])W𝑀 )

(2)

where X ∈ R𝑁×𝑑 is the item embedding, XA-GNN is the item repre-
sentation generated by A-GNN, and A𝑠 is the adjacency matrix of
the dynamic global graph. Each element of A𝑔 , say A𝑔

𝑖 𝑗
, represents

the correlation between item 𝑖 and item 𝑗 .W𝑄

𝑖
,W𝑘

𝑖
,W𝑉

𝑖
,W𝑀 are all

learnable parameter matrices. | | is a concatenation operation, and
𝑘 is the head number (in this paper, we set 𝑘 = 4). Compared with
existing self-attention mechanisms [26], A-GNN replaces softmax
with a tanh function to cope with non-positive correlations between
items. It also differs from GAN [27] in obtaining the correlations
between any pair of items rather than with the neighbor items.
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Figure 2: Architecture of DGNN.

We stack multiple A-GNN blocks to enhance the model’s rep-
resentation capacity. As such, each module takes all the previous
blocks’ outputs as the input:

X(𝑚)
A-GNN = A-GNN(X + X(1)

A-GNN + ... + X(𝑚−1)
A-GNN,A

𝑔) (3)

where A-GNN(·) denotes the A-GNN block, 𝑚 is the number of
A-GNN blocks, and X(𝑖)

A-GNN is the 𝑖-th block’s output. A-GNN’s
final output is the representation of the last block𝑀 , i.e., X(𝑀)

A-GNN.

4.3 SG-GNN Module and Fusion Layer
The graph neural network with a single gate (SG-GNN) module
aims to leverage the explicit dependencies among items as reflected
by the sequential information in sessions. To this end, SG-GNN
aggregates the information of neighbors into the center node via a
gate mechanism for representation update:

J = XW𝐽 , P = XW𝑃 , Z = XW𝑍

R = Ã𝑠 JW𝑅, U = Ã𝑠 JW𝑈

XSG-GNN = P + ReLU(R + Z) ⊙ U
(4)

where Ã𝑠 is the normalized adjacency matrix (defined in Section 3).
W𝐽 , W𝑅 , W𝑍 , W𝑃 , W𝑈 are learnable parameter matrices. The
gate mechanism controls how much information from neighbors is
considered for updating node representation.

We apply multi-layers graph convolution as described below. In
particular, we use item embedding X as the first layer’s input. SG-
GNN’s final output is the last layer’s item representation X(𝐿)

SG-GNN.

X(𝑙)
SG-GNN = SG-GNN(X(𝑙−1)

SG-GNN, Ã
𝑠 ) (5)

Given implicit and explicit representations of items from A-GNN
and SG-GNN, we fuse them using a linear projection, thus obtaining
the final item representation X̃ as follows.

X̃ = [X(𝑀)
A-GNN | |X

(𝐿)
SC-GNN]W𝐹 (6)

where W𝐹 ∈ R2𝑑×𝑑 is a learnable parameter matrix.

4.4 Session Representation Layer
We use local and global representations of sessions to capture
users’ short-term and long-term preferences. Given a session 𝑠 =

[𝑖1, 𝑖2, ..., 𝑖𝑚], we assume users’ current preference can be reflected
by the last item 𝑖𝑚 , following previous research [33]. We thereby
use the representation of the last-clicked item 𝑖𝑚 as the session’s lo-
cal representation, i.e., s𝑙 = x̃𝑚 . As for the global representation of
session 𝑠 , sg, we generate it based on the representations of all items
in the session. Specifically, we employ a soft-attention mechanism
to fuse the information from all items while taking into account
their varied importance:

𝛼𝑖 = q𝑇𝜎 (W1x̃𝑚 +W2x̃𝑖 + c)

s𝑔 =
𝑚∑︁
𝑖=1

𝛼𝑖 x̃𝑖
(7)

where q𝑇 , x̃𝑖 ∈ R𝑑 andW1,W2 ∈ R𝑑×𝑑 are all learnable parameters.
𝛼 controls the weights of item representations.

Finally, we concatenate the local and global representations via
a linear transformation to obtain the final session representation s:

s = [s𝑙 | |s𝑔]W3 (8)

where matrixW3 ∈ R2𝑑×𝑑 compresses two combined representa-
tion vectors into the latent space R𝑑 .

4.5 Prediction Layer and Loss Function
We calculate item scores ẑ ∈ R𝑁 as the inner production of item
embedding X and session representation s:

ẑ = s𝑇X (9)

Then, we apply a softmax function to the scores for next-item
prediction. This will generate probabilities indicating how likely
each item would be the next to be clicked by the user:

ŷ = softmax(ẑ) (10)
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For each session, we define the loss function as the cross-entropy
of the prediction and the ground truth:

L(ŷ) = −
𝑛∑︁
𝑖=1

y𝑖𝑙𝑜𝑔(ŷ𝑖 ) + (1 − y𝑖 )𝑙𝑜𝑔(1 − ŷ𝑖 ) (11)

where y is the one-hot encoding of the ground-truth item.

5 EXPERIMENTS
In this section, we report our experimental setting, including datasets,
baselines, evaluation metrics, and an analysis of experimental re-
sults. We aim to answer the following questions:

• RQ1. How does the DGNN perform compared with state-of-
the-art (SOTA) session-based recommendation methods?

• RQ2. How do different sub-modules in the DGNN affect
recommendation performance?

• RQ3. How do hyper-parameter settings influence model
performance?

• RQ4. How is the model interpretation capability of DGNN?

5.1 Datasets
We conducted experiments on four real-work datasets commonly
used for session-based recommendation.

• Diginetica is a personalized e-commerce research challenge
dataset fromCIKMCUP 2016. The dataset contains transition
history, which is suitable for session-based recommendation.
Following [1, 3, 15, 20, 33], we used the sessions in the last
week for test.

• Yoochoose is a dataset that contains a stream of user clicks
on an e-commerce website within six months from RecSys
Challenge 2015. We conducted the typical method in [1, 3,
15, 20, 31, 33] to split the dataset. Since the training set of
Yoochoose is extremely large, we used the most recent por-
tions 1/64 and 1/4 subsample of all training sessions as the
training set, denoted as "Yoochoose1/64" and "Yoochoose1/4",
respectively.

• Gowalla is a popular dataset widely used for point-of-interest
recommendation. Following [1, 3, 7], we kept the top 30,000
most popular locations and grouped users’ check-in records
into disjoint sessions by splitting intervals between adjacent
records that are longer than one day. We used the last 20%
of sessions as the test set.

• Last.FM is a music artist recommendation dataset. Follow-
ing [1, 3, 7, 20], we kept the top 40,000 most popular artists
and treated users’ transactions in 8 hours as a session. Like
Gowalla, we used the most recent 20% of sessions as the test
set.

Following [1, 3, 7, 20, 33], we filtered out sessions of length 1
and items appearing less than 5 times. Furthermore, for each given
session 𝑠 = [𝑖1, 𝑖2, ..., 𝑖𝑚], we generated the input and corresponding
labels, i.e., ( [𝑖1], 𝑖2), ( [𝑖1, 𝑖2], 𝑖3), ..., ( [𝑖1, 𝑖2, ..., 𝑖𝑚−1], 𝑖𝑚), for all the
datasets. Table 1 summarizes the statistics for the datasets.

5.2 Baselines and Evaluation Metrics
We chose 11 baselines from five categories of methods: conven-
tional methods (e.g., popularity- and Nearest Neighbors (NN)-based

Table 1: Statistics of datasets

Diginetica Yoochoose1/64 Yoochoose1/4 Gowalla Last.FM
#clicks 981,620 557,248 8,326,407 1,122,788 3,835,706

#train sessions 716,835 369,859 5,917,745 675,561 2,837,644
#test sessions 60,194 55,898 55,898 155,332 672,519

#items 42,596 16,766 29,618 29,510 38,615
#length ≤ 5 537,546 289,490 4,234,915 627,100 1,136,909
#length >5 239,483 136,267 1,738,734 203,793 2,373,254

Average length 4.80 6.16 5.71 4.32 9.16

methods), sequence-based methods including Markov Chain and se-
quential neural networks, graph neural networks with intra-session
graphs and inter-session graphs, as listed below:

• POP is a simple benchmark that recommends the most pop-
ular (highest ranked) item for users.

• Item-KNN [22] recommends items through the similarity
between every item of the current session and the other
items.

• FPMC 4 [21] combines the first-order Markov Chain with
matrix factorization to capture both sequential effects and
user preferences.

• GRU4Rec5 [10] employs a gated recurrent unit to model
the sequential behavior of items in a session.

• NARM6 [12] improves GRU4Rec by introducing RNN with
attention to session-based recommendation.

• SR-GNN 7 [33] models explicit dependencies within a ses-
sion via a graph neural network and then applies a soft-
attention mechanism to generate session-level embeddings.

• SGNN-HN [16] applies a star graph neural network tomodel
the complex transition relationships between items without
direct connections in an ongoing session.

• LESSR 8 [3] introduces two kinds of session graphs with self-
loop and short-cuts to capture implicit connections and solve
the information loss and long-rage dependency problem.

• MSGIFSR 9 [7] proposes a consecutive intent unit to extract
user intent from different granularities based on different
item groups in the current session. It achieves the latest
SOTA in the above four datasets.

• GC-SAN [36] gets local context information by using GGNN
and then utilizes a self-attention mechanism to capture ex-
plicit dependency.

• GCE-GNN [32] consider 𝜖-neighbor (𝜖 = 2) connections to
construct an inter-session graph for session-based recom-
mendation.

We evaluated all models with two widely used metrics: HR@20
(Hit Rate) andMRR@20 (Mean Reciprocal Rank). HR@20 represents
the proportion of correctly recommended items among the top 20
items. MRR@20 is the average of reciprocal ranks of the correctly-
recommended items. The reciprocal rank is set to 0 when the rank
exceeds 20.

4https://github.com/khesui/FPMC
5https://github.com/hidasib/GRU4Rec
6https://github.com/lijingsdu/sessionRec_NARM
7https://github.com/CRIPAC-DIG/SR-GNN
8https://github.com/twchen/lessr
9https://github.com/SpaceLearner/SessionRec-pytorch
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5.3 Experimental Setup
For a fair comparison, we followed [7, 16, 33] and selected the
Adam optimizer with the initial learning rate of 0.001, which will
decay by 0.5 after every five epochs. We set the 𝐿2 regularization
to 10−5 and used an early stopping strategy (no improvements in
the evaluation metrics for five consecutive epochs) to relieve the
overfitting problem. We initialized all parameters using a Gaussian
distribution with a mean of 0 and a standard deviation of 0.1. We
fixed both the embedding dimension and batch size at 100. For the
GC-GNN module, the number of layers varied within {1,2,3,4}. For
the A-GNN module, the block number was within the scope of
{4,5,6}. We tested the dropout ratio within {0.1, 0.5, 0.9}.

5.4 Overall Comparison (RQ1)
Our comparison results (Table 2) show our method (DGNN) signifi-
cantly outperformed all the baselines, which is largely attributed
to the two modules’ capability to capture more accurate and com-
plete user preferences—while SG-GNN can effectively integrate the
explicit information from neighbors through the improved graph
convolution operation, the self-learning dynamic graph can learn
implicit correlations between items, which are equally important for
improving the recommendation performance. In particular, DGNN
outperformed state-of-the-art (SOTA) performance by a large mar-
gin, i.e., a 115.29% improvement, on Last.FM, which contains longer
sessions when compared with other datasets. This reveals the ability
of graph neural networks to handle prediction tasks on long-range
sessions when equipped with explicit and implicit item relationship
modeling.

Deep learning methods performed significantly better than tra-
ditional methods (e.g., POP, Item-KNN, and FPMC), demonstrating
their superior complex feature extraction and representation ability.
NARM outperformed GRU4Rec because NARM can not only cap-
ture the latent sequential information in sessions (as GRU4Rec does)
but also learn item correlations via the attention mechanism. GNN-
based models generally outperformed sequence-based methods,
showing the importance of session graphs in representing transition
relationships between different items. MSGIFSR designs various
granular intent units to model the implicit and multi-granular rela-
tionships among items, thus achieving the latest SOTA for session-
based recommendation. This suggests the necessity and significance
of designing sophisticated modules to capture implicit correlations
between items for session-based recommendation.

5.5 Ablation Study (RQ2)
To verify the effectiveness of A-GNN and SG-GNN in DGNN, we
removed or replaced one of these modules from DGNN to analyze
the performance change.

• MLP-SR: replaces A-GNN and SG-GNN with one MLP layer
with ReLU activation function. The session representation
layer, prediction layer and loss function keep the same as
DGNN.

• w/o A-GNN: removes A-GNN from DGNN.
• w/o SG-GNN: removes SG-GNN from DGNN.
• w/o

∑
: removes the accumulated operation in A-GNN and

only feeds the output of the latest block into the next block
for implicit correlation modeling.

• w Self-Att: replaces A-GNNwith a multi-head self-attention
module [26] and only uses the representation from the last
block for implicit correlation modeling.

• w GGNN: replaces SG-GNN with the GGNN module in SR-
GNN [14, 33].

Our results (Table 3) show that MLP-SR beat all sequential mod-
els on all datasets except LastFM, which contains much longer
sessions than other datasets. The reason lies in that a naive MLP
layer could be sufficient for capturing the global information from
shorter sessions, while sequential models might be more efficient in
handling longer sessions. All modules were shown to be effective,
given that removing any of them would drastically degrade the
performance.

DGNN outperformed many baselines (e.g., SR-GNN, LESSR, GC-
SAN) even without A-GNN, which is impressive, considering SG-
GNN only contains half the numbers of parameters and floating
point operations (FLOPs) in SG-GNN (refer to Table 4). The per-
formance of DGNN significantly decreased when a self-attention
module replaced A-GNN. But changing the information aggregation
modules (SG-GNN to GGNN) did not notably impact the results.
This indicates that A-GNN is robust to the graph neural networks
for explicit dependencymodeling as an auxiliarymodule for session-
based recommendation. After removing the accumulated operation
in A-GNN (w/o

∑
), we observed a significant drop in the perfor-

mance of DGNN. But still, A-GNN beats self-attention even without
the accumulation operation. Therefore, we conclude both the out-
put of previous blocks in A-GNN and the tanh activation function
are critical to our approach.

5.6 Impact of Hyper-parameter Setting (RQ3)
We studied two parameters, the number of A-GNN blocks and the
number of SG-GNN layers, in this experiment. Our results (Fig-
ure 3) show that a moderate number (neither too large nor too
small) of A-GNN blocks generally resulted in better performance.
An exception is with the Yoochoose dataset, which is extremely
large and contains complex transaction patterns. Since the sampled
sub-datasets (namely Yoochoose 1/64 and Yoochoose 1/4) cannot fully
cover the (original) entire dataset’s features, more A-GNN blocks
and SG-GNN layers enhance the feature extraction capability to
model such complex transaction patterns. Since SG-GNN can obtain
the global information from the whole dynamic graph with one
convolution operation, a larger number of multiple graph convo-
lution layers will result in smoother item representations, which
could negatively affect DGNN’s performance.

5.7 Visual Analysis of A-GNN (RQ4)
Session representation. We retrieved two random sessions from
the diginetica dataset to explore the impact of sequence information
on session representation. The two sessions contained the same
items in different ordering. We selected a typical sequential neu-
ral network, GRU4Rec, as well as our method, DGNN, to generate
the session representations. Our results (Figure 4a-b) show that
GRU4Rec generated similar representations for session A and ses-
sion B. These representations, however, significantly differ from
the representations output by DGNN. It suggests that sequential
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Table 2: Experimental results (%) on the four datasets. The best results are highlighted in boldface, and the second-best results
are underlined. * denotes a significant improvement of DGNN over the best baseline results (t-test P<.05).

Model Diginetica Yoochoose 1/64 Yoochoose 1/4 Gowalla Last.FM
HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20

POP 0.89 0.28 6.71 1.65 1.37 0.31 1.46 0.38 5.26 1.26
Item-KNN 37.75 11.57 51.60 21.81 52.31 21.70 38.60 16.66 14.90 4.04
FPMC 26.53 6.66 45.62 15.01 51.86 17.50 29.91 11.45 12.86 3.78

GRU4Rec 29.45 8.22 60.64 22.89 59.53 22.60 41.98 18.37 17.90 5.39
NARM 49.70 16.00 68.32 28.63 69.73 29.23 50.07 23.92 21.83 7.59
SR-GNN 50.73 17.78 70.57 30.94 71.36 31.89 50.32 24.25 22.33 8.23
SGNN-HN 55.67 19.45 72.13 32.60 73.52 32.63 55.28 27.58 25.07 9.40
LESSR 51.71 18.15 70.59 31.46 72.67 33.12 51.34 25.49 23.37 9.01

MSGIFSR 57.11 20.05 73.13 33.50 74.01 33.74 56.64 29.02 27.63 10.86
GC-SAN 51.70 17.61 70.66 30.04 71.83 30.93 50.68 24.67 22.64 8.42
GCE-GNN 54.02 19.04 70.91 30.63 71.40 31.49 53.96 24.53 24.39 8.63
DGNN 67.65* 27.89* 75.85* 34.09* 76.90* 36.02* 58.51* 30.40* 47.17* 23.38*
Improv. 18.46% 49.10% 3.72% 1.76% 3.90% 6.76% 3.30% 4.76% 70.72% 115.29%

Figure 3: Parameter sensitivity of the number of A-GNN blocks and IP-GNN layers.

Figure 4: (a) and (b) are the representations of session 𝐴:{7951, 7952, 4999, 7952, 305} and session 𝐵:{4999, 7951, 7952, 305, 7952}
generated by GRU4Rec and DGNN. (c) visualizes the adjacency matrices in A-GNN at epochs 0, 4, and 8, respectively.

neural networks, e.g., GRU4Rec, may not capture the sequential
information in sessions as effectively as our GNN-based approach.
Implicit Correlation.We visualized the global graph adjacency
matrices in A-GNN at Epoch 0, Epoch 4, and Epoch 8, to better

understand the evolution of implicit correlation between items dur-
ing the training process. Our results (Figure 4c) revealed that the
correlation between any two items was similar at the beginning
(Epoch 0). As the training progressed, the correlation between item
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Figure 5: Item representations of (a) self-attention and (b) A-GNN on S1 (two-dimensional space). Alignment analysis: the
histograms show the distributions of 𝑙2 distance between the representations of item pairs, where the black dotted lines indicate
the mean distances. Uniformity analysis: the other plots in subfigures show the distributions of item representations with
Gaussian kernel density estimation (KDE) in R2 (top-right) and with von Mises-Fisher (vMF) KDE on angles (bottom-right),
i.e., arctan2(𝑦, 𝑥) for each point (𝑥,𝑦) ∈ S1. The darker the color, the denser the distribution in the top-right plots. Item
representations generated by A-GNN are more aligned (lower 𝑙2 distances) and uniform (evenly distributed).

Table 3: Results (%) of ablation experiments.

Datasets MLP-SR w/o A-GNN w/o SG-GNN w/o
∑

w Self-Att w GGNN DGNN

Diginetica HR@20 58.60 53.26 49.67 50.54 50.83 64.22 67.65
MRR@20 20.77 17.71 16.50 17.44 16.54 25.14 27.89

Yoo 1/64 HR@20 70.07 71.28 68.10 73.23 70.68 69.25 75.85
MRR@20 30.53 30.87 28.68 32.21 30.84 28.90 34.09

Yoo 1/4 HR@20 70.23 74.97 69.88 69.45 75.24 76.64 76.90
MRR@20 31.02 33.41 30.32 30.78 33.38 35.99 36.02

Gowalla HR@20 51.73 52.62 49.47 55.31 50.70 59.27 58.51
MRR@20 25.12 25.63 23.75 26.59 24.37 28.85 30.40

LastFM HR@20 21.98 23.89 21.06 23.39 23.21 38.12 47.17
MRR@20 8.13 9.09 7.74 9.02 8.91 17.47 23.38

Table 4: Time and Space Complexity. We set the size of learn-
able parameter matrices to the dimension of the item em-
bedding 𝑑 , and the size of graphs to 𝑁 × 𝑁 for SG-GNN and
GGNN.

Module Number of Parameters FLOPs
GGNN 𝑑 × (11𝑑 + 8) 2𝑑 × (2𝑁 + 11𝑑)
SG-GNN 𝑑 × 5𝑑 2𝑑 × (2𝑁 + 5𝑑)

305 (ground truth) and 499, 7952 (previously interacted items) in-
creased while the correlation between 305 and 2022, 1997 (negative
samples randomly selected from the item set) dropped steadily. The
above results demonstrate that the adjacency matrix in A-GNN can
successfully distinguish positive implicit correlations from weak
or negative ones between items. This validates our assumption
of the existence of implicit correlations between items, with the
correlations between items within the same sessions tending to be
positive and those between irrelevant items being negative.
Item Representation. We visualized the item representations
generated by a self-attention module and A-GNN to offer further in-
sights into the superior effectiveness of A-GNN to the self-attention
module in implicit correlation modeling. We consider two key prop-
erties in contrastive learning [30] for our visualization task: (1)
alignment (closeness) of item representations from item pairs; (2)
uniformity of the induced distribution of the (normalized) item rep-
resentations on the hypersphere. We randomly selected 5,000 item

representations generated by the self-attention module and A-GNN
for the Diginetica dataset, respectively. Then, we calculated the 𝑙2
distance of any two items to plot the frequency distribution his-
togram. We further visualized the normalized item representation
distribution with Gaussian kernel density estimation (KDE) in R2.
Figure 5 shows the above results. Comparing the 𝑙2 distance distri-
butions of item pairs’ representations obtained by the self-attention
module (the histogram in Figure 5a) and A-GNN module (the his-
togram in Figure 5b), we observed that A-GNN resulted in a smaller
mean distance (black dotted line) than self-attention, indicating
the item representations generated by A-GNN were more closely
clustered. A comparison of other diagrams in Figure 5 suggests
that A-GNN could obtain a more uniform item representation dis-
tribution on S1. The above analysis implies a uniform and aligned
distribution of item representations could benefit session-based
recommendation.

6 CONCLUSION
In this paper, we propose to decouple the modeling of explicit de-
pendencies and implicit correlations among items for session-based
recommendation. We present a dual graph neural network (DGNN),
where a GNN with a single gate (SG-GNN) captures the explicit
dependencies as reflected by the ordering of items in sessions, and
an adaptive GNN (A-GNN) learns implicit correlations between any
two items adaptively with a self-learning strategy. Our extensive
experiments demonstrate the superiority of DGNN to SOTA on
four public datasets. Besides, A-GNN is shown to generate a more
uniform and aligned distribution of item representations.

As we split the batch in a randommanner, the adaptive graphwill
be different in each training process. Thus, the results are somewhat
unstable. In future research, we will explore how to construct an
effective and efficient adaptive graph for the robust performance.
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